题目内容

【题目】已知直线l1:3x+2y﹣1=0和l2:5x+2y+1=0的交点为A
(1)若直线l3:(a2﹣1)x+ay﹣1=0与l1平行,求实数a的值;
(2)求经过点A,且在两坐标轴上截距相等的直线l的方程.

【答案】
(1)解:由 ,得

当a=2时,l3:3x+2y﹣1=0,与l1重合,不合题意,舍去

时, :3x+2y+4=0,与 平行,合题意∴


(2)解:由

由题知直线l的斜率存在且不为0,设l方程为y﹣2=k(x+1)

令x=0得y=k+2,令y=0得

解得k=﹣1或k=﹣2

∴l的方程为y=﹣x+1或y=﹣2x


【解析】(1)利用直线平行求出a,然后验证即可.(2)求出A的坐标,设出方程,求出截距,化简求解即可.
【考点精析】本题主要考查了截距式方程的相关知识点,需要掌握直线的截距式方程:已知直线轴的交点为A,与轴的交点为B,其中才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网