题目内容
【题目】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:
(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.
【答案】(1)65,73.3;(2)3,2,1;(3)
【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.
(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.
(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.
试题解析:
(1)由频率分布直方图得:众数为:=65.
成绩在[50,70)内的频率为:(0.005+0.035)×10=0.4,
成绩在[70,80)内的频率为:0.03×10=0.3,
∴中位数为:70+×10≈73.3.
(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,
∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.
(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;
成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.
∴从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:
ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,
记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,
则事件Q包含的基本事件有18种,
∴成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=.