题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求出曲线、的参数方程;
(Ⅱ)若、分别是曲线、上的动点,求的最大值.
【答案】(1), (2)
【解析】试题分析:(Ⅰ)由题意,根据伸缩公式可求得曲线的普通方程,再普通方程与参数方程的互换公式进行转换,从而求出曲线的参数方程,同理可根据互换公式,将曲线的极坐标方程转化为参数方程.
(Ⅱ)由(Ⅰ)知曲线是以点为圆心,半径的圆,则可任取曲线上的点,由两点间的距离公式,求出点到圆心的距离,从而求出,从而问题可得解.
试题解析:(Ⅰ)曲线: 经过伸缩变换,可得曲线的方程为,
∴其参数方程为(为参数);
曲线的极坐标方程为,即,
∴曲线的直角坐标方程为,即,
∴其参数方程为(为参数).
(Ⅱ)设,则到曲线的圆心的距离
,
∵,∴当时, .
∴ .
练习册系列答案
相关题目