ÌâÄ¿ÄÚÈÝ
£¨2011•ÆÖ¶«ÐÂÇøÈýÄ££©ÒÑÖªÍÖÔ²CµÄ³¤Ö᳤Êǽ¹¾àµÄÁ½±¶£¬Æä×ó¡¢ÓÒ½¹µãÒÀ´ÎΪF1¡¢F2£¬Å×ÎïÏßM£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬ÍÖÔ²CÓëÅ×ÎïÏßMµÄÒ»¸ö½»µãΪP£®
£¨1£©µ±m=1ʱ£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¹ý½¹µãF2£¬ÓëÅ×ÎïÏßM½»ÓÚA¡¢BÁ½µã£¬ÈôÏÒ³¤|AB|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÓÉÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
)ºÍÍÖÔ²»¡
+
=1(
¡Üx¡Ü2m)
£¨m£¾0£©ºÏ³ÉµÄÇúÏ߽С°Å×ÍÖÔ²¡±£¬ÊÇ·ñ´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬Èô´æÔÚ£¬Çó³öÁ½Ö±½Ç±ßËùÔÚÖ±ÏßµÄбÂÊ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©µ±m=1ʱ£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¹ý½¹µãF2£¬ÓëÅ×ÎïÏßM½»ÓÚA¡¢BÁ½µã£¬ÈôÏÒ³¤|AB|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÓÉÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
2m |
3 |
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
£¨m£¾0£©ºÏ³ÉµÄÇúÏ߽С°Å×ÍÖÔ²¡±£¬ÊÇ·ñ´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬Èô´æÔÚ£¬Çó³öÁ½Ö±½Ç±ßËùÔÚÖ±ÏßµÄбÂÊ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÒòΪÍÖÔ²CµÄ³¤Ö᳤Êǽ¹¾àµÄÁ½±¶£¬ËùÒԿɵõ½a£¬bÖ®¼äµÄ¹Øϵ£¬µ±m=1ʱ£¬¿ÉÖªÅ×ÎïÏß·½³Ì£¬¾Ý´ËÄܹ»Çó³öÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬ÒòΪÅ×ÎïÏßµÄ×¼ÏßÓëxÖá½»ÓÚÍÖÔ²µÄ×ó½¹µãF1£¬ËùÒÔ¿ÉÇó³öÍÖÔ²ÖÐcµÄÖµ£¬ÔÙ¸ù¾Ýa£¬b£¬cÖ®¼äµÄ¹Øϵ£¬¾Í¿ÉÇó³öa£¬bµÄÖµ£¬µÃµ½ÍÖÔ²·½³Ì£®
£¨2£©Éè³öÖ±ÏßlµÄµãбʽ·½³Ì£¬Ó루1£©ÖÐËùÇóÍÖÔ²·½³ÌÁªÁ¢£¬ÓÃΤ´ï¶¨ÀíÇó³öx1+x2£¬x1x2£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|AB|£¬ÈÃÆäµÈÓÚ½¹µãÈý½ÇÐΡ÷PF1F2µÄÖܳ¤£¬¼´¿É½â³öбÂÊk£¬µÃµ½Ö±ÏßlµÄ·½³Ì£®
£¨3£©ÏȼÙÉè´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬ÓÉA1¡¢A2ËùÔÚÇúÏßÉϵÄλÖ㬷Ö3ÖÖÇé¿ö£¬¢Ùµ±A1¡¢A2ͬʱÔÚÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
)ÉÏʱ£¬¢Úµ±A1¡¢A2ͬʱÔÚÍÖÔ²»¡
+
=1(
¡Üx¡Ü2m)ÉÏʱ£¬¢Ûµ±A1ÔÚÅ×ÎïÏß»¡ÉÏ£¬A2ÔÚÍÖÔ²»¡ÉÏʱ£¬·Ö±ð¼ÆËãkÖµ£¬¿´ËùÇókÖµÊÇ·ñÔÚ£¬ÈôkÖµ´æÔÚ£¬Ôò¼ÙÉèÕýÈ·£¬·ñÔò£¬¼ÙÉè²»ÕýÈ·£®
£¨2£©Éè³öÖ±ÏßlµÄµãбʽ·½³Ì£¬Ó루1£©ÖÐËùÇóÍÖÔ²·½³ÌÁªÁ¢£¬ÓÃΤ´ï¶¨ÀíÇó³öx1+x2£¬x1x2£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|AB|£¬ÈÃÆäµÈÓÚ½¹µãÈý½ÇÐΡ÷PF1F2µÄÖܳ¤£¬¼´¿É½â³öбÂÊk£¬µÃµ½Ö±ÏßlµÄ·½³Ì£®
£¨3£©ÏȼÙÉè´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬ÓÉA1¡¢A2ËùÔÚÇúÏßÉϵÄλÖ㬷Ö3ÖÖÇé¿ö£¬¢Ùµ±A1¡¢A2ͬʱÔÚÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
2m |
3 |
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
½â´ð£º½â£º£¨1£©ÉèÍÖÔ²µÄʵ°ëÖ᳤Ϊa£¬¶Ì°ëÖ᳤Ϊb£¬°ë½¹¾àΪc£¬
µ±m=1ʱ£¬ÓÉÌâÒâµÃ£¬a=2c=2£¬b2=a2-c2=3£¬a2=4£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ
+
=1£®
£¨2£©ÒÀÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬Éèl£ºy=k£¨x-1£©£¬ÓÉ
µÃ£¬k2x2-£¨2k2+4£©x+k2=0£¬
ÓÉÖ±ÏßlÓëÅ×ÎïÏßMÓÐÁ½¸ö½»µã£¬¿ÉÖªk¡Ù0£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃx1+x2=
£¬Ôò|AB|=x1+x2+2=4•
ÓÖ¡÷PF1F2µÄÖܳ¤Îª2a+2c=6£¬ËùÒÔ4•
=6£¬
½âµÃk=¡À
£¬´Ó¶ø¿ÉµÃÖ±ÏßlµÄ·½³ÌΪ2x¡À
y-2=0
£¨3£©ÓÉÌâÒâµÃ£¬¡°Å×ÍÖÔ²¡±ÓÉÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
)ºÍÍÖÔ²»¡
+
=1(
¡Üx¡Ü2m)ºÏ³É£¬ÇÒP1(
£¬
)¡¢P2(
£¬-
)£®
¼ÙÉè´æÔÚ¡÷OA1A2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÓÉA1¡¢A2ËùÔÚÇúÏßµÄλÖÃ×öÈçÏÂ3ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±A1¡¢A2ͬʱÔÚÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
)ÉÏʱ£¬ÓÉOP1¡¢OP2µÄбÂÊ·Ö±ðΪ
£¬-
£¬¡ÏA1OA2±ÈΪ¶Û½Ç£¬ÏÔÈ»ÓëÌâÉèì¶Ü£®´Ëʱ²»´æÔÚ
¢Úµ±A1¡¢A2ͬʱÔÚÍÖÔ²»¡
+
=1(
¡Üx¡Ü2m)ÉÏʱ£¬ÓÉÍÖÔ²ÓëµÈÑüÖ±½ÇÈý½ÇÐεĶԳÆÐÔÖª£¬
Á½Ö±½Ç±ß¹ØÓÚxÖá¶Ô³Æ£®
¼´Ö±ÏßOA1µÄбÂÊΪ1£¬Ö±ÏßOA2µÄбÂÊΪ-1£¬
µÃx=
¡Ê[
£¬2m]·ûºÏÌâÒ⣻´Ëʱ´æÔÚ
¢Û²»·ÁÉèµ±A1ÔÚÅ×ÎïÏß»¡ÉÏ£¬A2ÔÚÍÖÔ²»¡ÉÏʱ£¬
ÓÚÊÇÉèÖ±ÏßOA1µÄ·½³ÌΪy=kx£¨ÆäÖÐ|k|¡Ý
£©£¬½«Æä´úÈëy2=4mx(0¡Üx¡Ü
)µÃx1=
£¬y1=
£»
ÓÉOA1¡ÍOA2£¬Ö±ÏßOA2µÄ·½³ÌΪy=-
x£¬
ͬÀí´úÈëÍÖÔ²»¡·½³Ì
+
=1(
¡Üx¡Ü2m)µÃ
=
£¬
=
£¬
ÓÉ|OA1|=|OA2|µÃ3k4-12k2-16=0£¬½âµÃk=
Óë|k|¡Ý
ì¶Ü£¬´Ëʱ²»´æÔÚ£®
Òò´Ë£¬´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬Á½Ö±½Ç±ßËùÔÚÖ±ÏßµÄбÂÊ·Ö±ðΪ1ºÍ-1£®
µ±m=1ʱ£¬ÓÉÌâÒâµÃ£¬a=2c=2£¬b2=a2-c2=3£¬a2=4£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©ÒÀÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬Éèl£ºy=k£¨x-1£©£¬ÓÉ
|
ÓÉÖ±ÏßlÓëÅ×ÎïÏßMÓÐÁ½¸ö½»µã£¬¿ÉÖªk¡Ù0£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃx1+x2=
2k2+4 |
k2 |
1+k2 |
k2 |
ÓÖ¡÷PF1F2µÄÖܳ¤Îª2a+2c=6£¬ËùÒÔ4•
1+k2 |
k2 |
½âµÃk=¡À
2 |
2 |
£¨3£©ÓÉÌâÒâµÃ£¬¡°Å×ÍÖÔ²¡±ÓÉÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
2m |
3 |
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
2m |
3 |
2
| ||
3 |
2m |
3 |
2
| ||
3 |
¼ÙÉè´æÔÚ¡÷OA1A2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÓÉA1¡¢A2ËùÔÚÇúÏßµÄλÖÃ×öÈçÏÂ3ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±A1¡¢A2ͬʱÔÚÅ×ÎïÏß»¡y2=4mx(0¡Üx¡Ü
2m |
3 |
6 |
6 |
¢Úµ±A1¡¢A2ͬʱÔÚÍÖÔ²»¡
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
Á½Ö±½Ç±ß¹ØÓÚxÖá¶Ô³Æ£®
¼´Ö±ÏßOA1µÄбÂÊΪ1£¬Ö±ÏßOA2µÄбÂÊΪ-1£¬
|
µÃx=
2
| ||
7 |
2m |
3 |
¢Û²»·ÁÉèµ±A1ÔÚÅ×ÎïÏß»¡ÉÏ£¬A2ÔÚÍÖÔ²»¡ÉÏʱ£¬
ÓÚÊÇÉèÖ±ÏßOA1µÄ·½³ÌΪy=kx£¨ÆäÖÐ|k|¡Ý
6 |
2m |
3 |
4m |
k2 |
4m |
k |
ÓÉOA1¡ÍOA2£¬Ö±ÏßOA2µÄ·½³ÌΪy=-
1 |
k |
ͬÀí´úÈëÍÖÔ²»¡·½³Ì
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
x | 2 2 |
12k2m2 |
3k2+4 |
y | 2 2 |
12m2 |
3k2+4 |
ÓÉ|OA1|=|OA2|µÃ3k4-12k2-16=0£¬½âµÃk=
2+
|
6 |
Òò´Ë£¬´æÔÚÒÔÔµãOΪֱ½Ç¶¥µã£¬ÁíÁ½¸ö¶¥µãA1¡¢A2ÂäÔÚ¡°Å×ÍÖÔ²¡±ÉϵĵÈÑüÖ±½ÇÈý½ÇÐÎOA1A2£¬Á½Ö±½Ç±ßËùÔÚÖ±ÏßµÄбÂÊ·Ö±ðΪ1ºÍ-1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬ÒÔ¼°Ö±ÏßÓëÍÖԲλÖùØϵµÄÅжϣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿