题目内容
10.某几何体的三视图如图所示,则该几何体的体积为( )A. | $\frac{7}{3}$ | B. | $\frac{7}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |
分析 由已知中的三视图,可知该几何体是一个以正视图为底面的柱体,求出柱体的底面面积和高,代入柱体体积公式,可得答案.
解答 解:由已知中的三视图,可知该几何体是一个以正视图为底面的柱体,
柱体的底面面积S=$\frac{7}{2}$,
柱体的高h=1,
故柱体的体积V=Sh=$\frac{7}{2}$,
故选:B
点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关题目
12.当x>0时,不等式$\frac{x}{{x}^{2}+1}$≤1-2p恒成立,则实数p的取值范围是( )
A. | (-∞,-$\frac{1}{4}$] | B. | (-∞,$\frac{1}{4}$] | C. | [-$\frac{1}{4}$,+∞) | D. | [$\frac{1}{4}$,+∞) |
5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两焦点分别为F1,F2,若椭圆上存在一点P,使得∠F1PF2=120°,则椭圆的离心率e的取值( )
A. | [${\frac{{\sqrt{3}}}{2}$,1) | B. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | C. | [$\frac{1}{2}$,1) | D. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$] |