题目内容

8.求证:$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

分析 通过作差、利用|a|+|b|≥|a+b|,整理即得结论.

解答 证明:$\frac{|a|+|b|}{1+|a|+|b|}$-$\frac{|a+b|}{1+|a+b|}$
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$[(|a|+|b|)(1+|a+b|)-(1+|a|+|b|)|a+b|]
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$[|a|+|b|+|a+b|•|a|+|a+b|•|b|-(|a+b|+|a+b|•|a|+|a+b|•|b|)]
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$(|a|+|b|-|a+b|)
≥0,
∴$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

点评 本题考查不等式的证明,利用作差法是解决本题的关键,注意解题方法的积累,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网