题目内容

已知数列{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n项和为Sn,则使得Sn达到最大的n是(   )
A.18B.19 C.20D.21

试题分析:设{an}的公差为d,由题意得
a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①
a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②联立得a1=39,d=-2,
∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400,
故当n=20时,Sn达到最大值400.故选C.
点评:求等差数列前n项和的最值问题可以转化为利用二次函数的性质求最值问题,但注意n取正整数这一条件.也可通过确定通项公式,进一步确定正负项分界。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网