题目内容
已知椭圆C:
的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求△ABM的面积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135577151085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557731413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557762661.png)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557778616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557809644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557840783.png)
(1)
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557856700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557871363.png)
试题分析:解:(Ⅰ)依题意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557902386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557918574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557965412.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557980549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557996453.png)
椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557856700.png)
(Ⅱ)因为直线l的斜率为1,可设l:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558090540.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558105986.png)
消y得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558136856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558152426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558168502.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557778616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557809644.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558214743.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558246817.png)
设直线MA:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558261835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558292759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558308811.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557840783.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135583391103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558355933.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558386858.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135584021053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135584171105.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135584481371.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558464676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558495777.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558511621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013558542605.png)
设△ABM的面积为S,直线l与x轴交点记为N,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135585732301.png)
所以 △ABM的面积为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557871363.png)
点评:主要是考查了直线与椭圆的位置关系以及韦达定理的运用,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目