题目内容
【题目】如图,长方体的底面是正方形,点在棱上,.
(1)证明:平面;
(2)若,求二面角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)根据长方体性质可知平面,从而,由题意,即可由线面垂直的判定定理证明平面;
(2)由题意,设,建立空间直角坐标系,即可写出各个点的坐标,求得平面和平面的法向量,即可由两个平面的法向量求得二面角夹角的余弦值,再由同角三角函数关系式即可求得二面角的正弦值.
(1)由已知得,平面,平面,
故.
又,且,
所以平面.
(2)由(1)知.由题设知,所以,
故,. 设,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系:
则,,,,,,.
设平面的法向量为,则即.
所以可取.
设平面的法向量为,则即
所以可取.
于是.
由同角三角函数关系式可得二面角的正弦值为.
练习册系列答案
相关题目
【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:
男生身高频率分布表
男生身高 (单位:厘米) | ||||||
频数 | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高频数分布表
女生身高 (单位:厘米) | ||||||
频数 | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估计这1000名学生中女生的人数;
(2)估计这1000名学生中身高在的概率;
(3)在样本中,从身高在的女生中任取3名女生进行调查,设表示所选3名学生中身高在的人数,求的分布列和数学期望.(身高单位:厘米)