题目内容
【题目】已知f(x)= x3﹣x2+ax+m,其中a>0,如果存在实数t,使f′(t)<0,则f′(t+2)f′( )的值( )
A.必为正数
B.必为负数
C.必为非负
D.必为非正
【答案】B
【解析】解:∵ ,∴f′(x)=x2﹣2x+a. ∵存在实数t,使f'(t)<0,a>0,∴t2﹣2t+a<0的解集不是空集,
∴△=4﹣4a>0,解得a<1,因此0<a<1.
令t2﹣2t+a=0,解得 ,
∴t2﹣2t+a<0的解集是{x|0< <2}.
∵f′(t+2)=(t+2)2﹣2(t+2)+a=t(t+2)+a,∴f′(t+2)>0;
∵ = = ,
∴ = = ≥0,
∴ ,
∴ <0,
故选B.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.
【题目】近年来,我国电子商务蓬勃发展. 2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(Ⅰ) 根据已知条件完成下面的列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
对服务满意 | 对服务不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.
附:(其中为样本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |