题目内容

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

【答案】解:设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d= =| t|,
由勾股定理及垂径定理得:( 2=r2﹣d2 , 即9t2﹣2t2=7,
解得:t=±1,
∴圆心坐标为(3,1),半径为3;圆心坐标为(﹣3,﹣1),半径为3,
则(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9
【解析】由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,然后过圆心作出弦的垂线,根据垂径定理得到垂足为弦的中点,利用点到直线的距离公式求出圆心到直线y=x的距离d,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网