题目内容
【题目】已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)过椭圆左焦点的直线与椭圆交于两点,直线过坐标原点且直线与的斜率互为相反数,直线与椭圆交于两点且均不与点重合,设直线的斜率为,直线的斜率为.证明: 为定值.
【答案】(1);(2)定值为
【解析】试题分析:(Ⅰ)根据椭圆的离心率为,且过点,结合性质 ,列出关于 、 、的方程组,求出 、 、,即可得结果;(Ⅱ)设,联立,消去得,,利用斜率公式以及韦达定理,化简可得则,所以为定值.
试题解析:(Ⅰ)由题可得,解得.
所以椭圆的方程为.
(Ⅱ)由题知直线斜率存在,设.
联立,消去,
由题易知恒成立,由韦达定理得,
因为与斜率相反且过原点,
设, ,
联立,
消去得,
由题易知恒成立,
由韦达定理得,
则
,所以为定值.
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
【答案】(1);(2)
【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得;
(2)利用等体积法可求点到平面的距离.
试题解析:((1)因为平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.
因为,
.
(2)因为 , ,
所以平面,
又因为平面,
所以平面平面,
平面平面,
在平面内过点作直线于点,则平面,
在和中,
因为,所以,
又由题知,
所以,
由已知求得,所以,
连接BD,则,
又求得的面积为,
所以由点B 到平面的距离为.
【题型】解答题
【结束】
19
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )