题目内容
【题目】如图,椭圆:的离心率是,过点的动直线与椭圆相交于,两点,当直线平行轴时,直线被椭圆截得的线段长为4.
(1)求椭圆的方程;
(2)设为坐标原点,是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由.
【答案】(1)(2)存在;
【解析】
(1)由椭圆的离心率为,过点的动直线与椭圆相交于,两点,列出方程组求出,由此能求出椭圆的方程;
(2)当直线的斜率存在时,设直线为,与椭圆联立得,
,由此利用根的判别式,韦达定理,向量的数量积,结合已知条件推出为定值,当直线的斜率不存在时,
,从而得到答案.
(1)解:由题设知,,,
设椭圆方程为,令,得,∴,
解得,所以椭圆的方程为.
(2)当直线的斜率存在时,设直线的方程为,,的坐标分别为,,联立得,
其判别式,所以,.
从而
,
所以,当,即时,.
此时,为定值.
当直线斜率不存在时,此时,,
∴.
故存在常数,使得为定值.
【题目】统计学中,经常用环比、同比来进行数据比较,环比是指本期统计数据与上期比较,如年月与年月相比,同比是指本期数据与历史同时期比较,如年月与年月相比.
环比增长率(本期数上期数)上期数,
同比增长率(本期数同期数)同期数.
下表是某地区近个月来的消费者信心指数的统计数据:
序号 | ||||||||
时间 | 年月 | 年月 | 年月 | 年月 | 年月 | 年月 | 年月 | 年月 |
消费者信心指数 | ||||||||
2017年 月 | 年 月 | 年 月 | 年 月 | 年 月 | 年 月 | 年 月 | 年 月 | 年 月 |
求该地区年月消费者信心指数的同比增长率(百分比形式下保留整数);
除年月以外,该地区消费者信心指数月环比增长率为负数的有几个月?
由以上数据可判断,序号与该地区消费者信心指数具有线性相关关系,写出关于的线性回归方程(,保留位小数),并依此预测该地区年月的消费者信心指数(结果保留位小数,参考数据与公式:,,,,)
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
年份(年) | |||||
维护费(万元) |
已知.
(I)求表格中的值;
(II)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;
(Ⅲ)求关于的线性回归方程;并据此预测第几年开始平均每台设备每年的维护费用超过万元.
参考公式:用最小二乘法求线性回归方程的系数公式:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.
分数 | |||||
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 | 5 |
(1)由以上统计数据填写下面列联表,并判断能否在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附:,其中.
临界值表
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.