题目内容
已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上;
(Ⅰ)求a1和a2的值;
(Ⅱ)求数列{an},{bn}的通项an和bn;
(Ⅲ)设cn=an•bn,求数列{cn}的前n项和Tn.
(Ⅰ)求a1和a2的值;
(Ⅱ)求数列{an},{bn}的通项an和bn;
(Ⅲ)设cn=an•bn,求数列{cn}的前n项和Tn.
分析:(I)由于an是Sn与2的等差中项,可得2an=Sn+2,分别令n=1,2即可得出a1,a2;
(II)设等比数列{an}的公比为q,则q=
=
=2,利用通项公式an=a1qn-1即可得出;由于点P(bn,bn+1)在直线y=x+2上,可得bn+1=bn+2,即bn+1-bn=2,利用等差数列的通项公式就看得出.
(III)cn=anbn=2n•2n=n•2n+1,利用“错位相减法”即可得出.
(II)设等比数列{an}的公比为q,则q=
a2 |
a1 |
4 |
2 |
(III)cn=anbn=2n•2n=n•2n+1,利用“错位相减法”即可得出.
解答:解:(I)∵an是Sn与2的等差中项,∴2an=Sn+2,
当n=1时,2a1=a1+2,解得a1=2;
当n=2时,2a2=a1+a2+2,∴a2=2+2=4.
(II)设等比数列{an}的公比为q,则q=
=
=2,
∴an=a1qn-1=2×2n-1=2n.
∵点P(bn,bn+1)在直线y=x+2上,
∴bn+1=bn+2,即bn+1-bn=2;
∴bn=2+(n-1)×2=2n.
(III)cn=anbn=2n•2n=n•2n+1,
∴Tn=1•22+2•23+…+n•2n+1,
2Tn=1•23+2•24+…+(n-1)•2n+1+n•2n+2,
∴-Tn=22+23+…+2n+1-n•2n+2=
-n•2n+2=2n+2-4-n•2n+2=(1-n)•2n+2-4,
∴Tn=(n-1)•2n+2+4.
当n=1时,2a1=a1+2,解得a1=2;
当n=2时,2a2=a1+a2+2,∴a2=2+2=4.
(II)设等比数列{an}的公比为q,则q=
a2 |
a1 |
4 |
2 |
∴an=a1qn-1=2×2n-1=2n.
∵点P(bn,bn+1)在直线y=x+2上,
∴bn+1=bn+2,即bn+1-bn=2;
∴bn=2+(n-1)×2=2n.
(III)cn=anbn=2n•2n=n•2n+1,
∴Tn=1•22+2•23+…+n•2n+1,
2Tn=1•23+2•24+…+(n-1)•2n+1+n•2n+2,
∴-Tn=22+23+…+2n+1-n•2n+2=
4(2n-1) |
2-1 |
∴Tn=(n-1)•2n+2+4.
点评:本题考查了等差数列和等比数列的通项公式及前n项和公式、“错位相减法”等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目