题目内容

18.已知数列{an}满足:a1=1,3a${\;}_{n+1}^{2}$+3a${\;}_{n}^{2}$-10anan+1=3,an<an+1(n∈N+).
(Ⅰ)证明:{3an+1-an}是等比数列;
(Ⅱ)设数列{an}的前n项和为Sn,求证:$\frac{{n}^{2}}{{S}_{n}}$≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

分析 (Ⅰ)法一、由数列递推式得$3{a_n}^2+3{a_{n-1}}^2-10{a_{n-1}}{a_n}=3$(n≥2),和原递推式作差后可得3an+1-an=3(3an-an-1)(n≥2),即可说明{3an+1-an}是等比数列;
法二、由已知结合原递推式求得数列的前几项,然后归纳猜测数列的通项公式,再由数学归纳法证明,最后证明数列{3an+1-an}是等比数列;  
(Ⅱ)由(Ⅰ)中的等比数列求得$3{a_{n+1}}-{a_n}={3^{n+1}}$,进一步求得${a_n}=\frac{1}{8}({3^{n+1}}-\frac{1}{{{3^{n-1}}}})$,取倒数后利用等比数列的前n项和证得不等式右边;
求出数列{an}的前n项和为Sn,代入不等式左边可得$\frac{n^2}{S_n}=\frac{{16{n^2}}}{{{3^{n+2}}+\frac{1}{{{3^{n-1}}}}-12}}$然后利用1为媒介,证明对任意n∈N*时,$\frac{n^2}{S_n}$≤$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$.

解答 证明:(Ⅰ)法一、由$3{a_{n+1}}^2+3{a_n}^2-10{a_n}{a_{n+1}}=3$,
得$3{a_n}^2+3{a_{n-1}}^2-10{a_{n-1}}{a_n}=3$(n≥2),
两式相减得,$3({a_{n+1}}^2-{a_{n-1}}^2)-10({a_{n+1}}-{a_{n-1}}){a_n}=0$,
又an<an+1,∴3(an+1+an-1)=10an
即3an+1-an=3(3an-an-1)(n≥2),
∴{3an+1-an}是等比数列;
法二、由题知$3{a_2}^2+3-10{a_2}=3$,即${a_2}=\frac{10}{3}=\frac{1}{8}(27-\frac{1}{3})$,于是$3{a_3}^2+\frac{100}{3}-\frac{100}{3}{a_3}=3$,
则${a_3}=\frac{91}{9}=\frac{1}{8}(81-\frac{1}{9})$,

猜想${a_n}=\frac{1}{8}({3^{n+1}}-\frac{1}{{{3^{n-1}}}})$(n∈N*),下面用数学归纳法证明.
当n=1时,${a_1}=1=\frac{1}{8}({3^2}-1)$,命题成立;
假设当n=k时,${a_k}=\frac{1}{8}({3^{k+1}}-\frac{1}{{{3^{k-1}}}})$,
则当n=k+1时,有 $3{a_{k+1}}^2+\frac{3}{64}{({3^{k+1}}-\frac{1}{{{3^{k-1}}}})^2}-\frac{10}{8}({3^{k+1}}-\frac{1}{{{3^{k-1}}}}){a_{k+1}}=3$,
即${a_{k+1}}^2-\frac{10}{8}({3^k}-\frac{1}{3^k}){a_{k+1}}+\frac{1}{64}({3^{2k+2}}-82+\frac{1}{{{3^{2k-2}}}})=0$,
解得${a_{k+1}}=\frac{1}{8}({3^{k+2}}-\frac{1}{3^k})$,或$\frac{1}{8}({3^k}-\frac{1}{{{3^{k-2}}}})$,
又an<an+1,∴${a_{k+1}}=\frac{1}{8}({3^{k+2}}-\frac{1}{3^k})$,
即对任意n∈N*有,${a_n}=\frac{1}{8}({3^{n+1}}-\frac{1}{{{3^{n-1}}}})$,
∴$3{a_{n+1}}-{a_n}=\frac{1}{8}({3^{n+3}}-\frac{1}{{{3^{n-1}}}}-{3^{n+1}}+\frac{1}{{{3^{n-1}}}})={3^{n+1}}$.
故{3an+1-an}是等比数列;  
(Ⅱ)由(Ⅰ)知$3{a_{n+1}}-{a_n}={3^{n+1}}$,
即${a_{n+1}}=\frac{1}{3}{a_n}+{3^n}$${a_{n+1}}-\frac{{{3^{n+2}}}}{8}=\frac{1}{3}({a_n}-\frac{{{3^{n+1}}}}{8})$,
∴${a_n}-\frac{{{3^{n+1}}}}{8}={3^{n-1}}({a_1}-\frac{9}{8})=-\frac{{{3^{n-1}}}}{8}$,即${a_n}=\frac{1}{8}({3^{n+1}}-\frac{1}{{{3^{n-1}}}})$,
∴$\frac{1}{a_n}=\frac{8}{{{3^{n+1}}-\frac{1}{{{3^{n-1}}}}}}$,则$\frac{1}{a_n}=\frac{8}{{8•{3^{n-1}}+{3^{n-1}}-\frac{1}{{{3^{n-1}}}}}}$,
故当n≥2时,$\frac{1}{a_n}<\frac{8}{{8•{3^{n-1}}}}=\frac{1}{{{3^{n-1}}}}$,
则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<1+\frac{1}{3}+\frac{1}{3^2}+…+\frac{1}{{{3^{n-1}}}}=\frac{{1-\frac{1}{3^n}}}{{1-\frac{1}{3}}}=\frac{3}{2}(1-\frac{1}{3^n})<\frac{3}{2}$.
而n=1时,$\frac{1}{a_1}=1<\frac{3}{2}$,
故对任意n∈N*有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{2}$.
${S_n}=\frac{1}{8}[\frac{{{3^2}(1-{3^n})}}{1-3}-\frac{{1-\frac{1}{3^n}}}{{1-\frac{1}{3}}}]=\frac{1}{16}({3^{n+2}}+\frac{1}{{{3^{n-1}}}}-12)$.
故$\frac{n^2}{S_n}=\frac{{16{n^2}}}{{{3^{n+2}}+\frac{1}{{{3^{n-1}}}}-12}}$,
当n≥2时,$\frac{1}{a_1}+…+\frac{1}{a_n}>1$,而当n=1时,$\frac{1}{S_1}=1=\frac{1}{a_1}$,当n=2时,$\frac{4}{S_2}=\frac{4}{{1+\frac{10}{3}}}=\frac{12}{13}<1$,
当n≥3时,$\frac{n^2}{S_n}=\frac{{16{n^2}}}{{8•{3^n}+{3^n}+\frac{1}{{{3^{n-1}}}}-12}}<\frac{{16{n^2}}}{{8•{3^n}}}=\frac{{2{n^2}}}{3^n}=\frac{{2{n^2}}}{{{{(1+2)}^n}}}<\frac{{2{n^2}}}{1+2n+2n(n-1)}<1$,
即对任意n∈N*时,$\frac{n^2}{S_n}$≤$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$.
综上,原不等式得证.

点评 本题考查了数列递推式,考查了等比关系的确定,训练了利用数学归纳法证明与自然数有关的命题,考查了利用放缩法证明数列不等式,综合考查了学生的逻辑思维能力和计算能力,题目设置难度较大,综合性强.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网