题目内容
【题目】某省的一个气象站观测点在连续4天里记录的指数与当天的空气水平可见度(单位: )的情况如表1:
该省某市2016年11月指数频数分布如表2:
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设,根据表1的数据,求出关于的线性回归方程;
(附参考公式: ,其中, )
(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与指数由相关关系,如表3:
日均收入(元) |
根据表3估计小李的洗车店该月份平均每天的收入.
【答案】(1) (2)2400元
【解析】试题分析:首先根据表格数据计算,再计算, ,求出回归直线方程;再根据表3可知,该月30天中有3天每天亏损约2000元,有6天每天亏损约1000元,有12天每天收入约2000元,有6天每天收入约6000元,有3天每天收入约8000元,计算出该月份平均每天的收入.
试题解析:
(1), ,
,
,
∴, ,
所以关于的线性回归方程为.
(2)根据表3可知,该月30天中有3天每天亏损约2000元,有6天每天亏损约1000元,有12天每天收入约2000元,有6天每天收入约6000元,有3天每天收入约8000元,估计小李的洗车店该月份平均每天的收入约为元.
【题目】苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):
类型 | 木地板A | 木地板B | 木地板C |
环保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.
(1)求Z的值;
(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.
【题目】苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):
类型 | 木地板A | 木地板B | 木地板C |
环保型 | 150 | 200 | Z |
普通型 | 250 | 400 | 600 |
按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.
(1)求Z的值;
(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.