题目内容

(本小题满分12分)如图, 在直角梯形中,

分别是的中点,现将折起,使,
(1)求证:∥平面;
(2)求点到平面的距离.

.解(1)连结AC,底面ABCD是正方形,AC交BD于点F,且F是AC中点
又点E为PC中点,EF∥PA,
∥平面PAD                         -------------5分
(2)设点A到平面PBC的距离为h。PD底面ABCD,PDBC,
又DCBC,DCPC=D,BC面PDC,BCPC.
又由PDDC,PD=DC=2,得PC=,
从而          --------------------8分
另一方面,由PD底面ABCD,ABBC,且PD=AB=BC=2,得

,从而得:
即点A到平面PBC的距离为.                       ----------12分   

解析试题分析:(1)欲证EF∥平面APG,根据直线与平面平行的判定定理可知只需证AP与平面EFG内一直线平行即可,取AD中点M,连接FM、MG,由条件知EF∥DC∥MG,则E、F、M、G四点共面,再根据三角形中位线定理知MF∥PA,满足定理所需条件;
(2)利用等体积法来表示得到高度问题。
考点:本题主要是考查线面平行的判定定理和点到面的距离的求解运用。
点评:解决该试题的关键是通过利用三就爱哦行的中位线来得到平行线,然后借助于线线平行来得到线面平行的证明。同时利用等体积法求解高度问题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网