题目内容

【题目】已知圆的圆心在直线上,且圆相切于点.过点作两条斜率之积为-2的直线分别交圆.

1)求圆的标准方程;

2)设线段的中点分别为,证明:直线恒过定点.

【答案】(1)(2)证明见解析

【解析】

1)设圆心,由直线与圆相切可知,利用斜率乘积等于可构造方程求得,由点到直线距离等于半径可求得半径,由此可得圆的标准方程;

2)设,则,将方程与圆的方程联立,由韦达定理和中点坐标公式可求得,代入直线方程求得;以替换可得,结合两点两线斜率公式求得,从而得到直线的方程;将直线的方程整理后,可确定所过定点.

1)设圆心

相切与点 ,即,解得:

的半径

的标准方程为:

2)设,则

联立得:

替换可得:

直线的方程为,即:

时, 直线过定点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网