题目内容

【题目】某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方图中x的值;
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

【答案】解:(I)由直方图可得:20×(x+0.025+0.0065+0.003×2)=1, 解得x=0.0125.
(II)企业缴税收不少于60万元的频率=0.003×2×20=0.12,
∴1200×0.12=144.
∴1200个企业中有144个企业可以申请政策优惠.
(III)X的可能取值为0,1,2,3,4.
由(I)可得:某个企业缴税少于20万元的概率=0.0125×20=0.25=
因此X~B(4, ),
∴分布列为P(X=k)= ,(k=0,1,2,3,4),
∴E(X)=4× =1
【解析】(I)由直方图可得:20×(x+0.025+0.0065+0.003×2)=1,解得x即可.(II)企业缴税收不少于60万元的频率=0.003×2×20=0.12,即可得出1200个企业中有1200×0.12个企业可以申请政策优惠.(III)X的可能取值为0,1,2,3,4.由(I)可得:某个企业缴税少于20万元的概率=0.0125×20= .因此X~B(4, ),可得分布列为P(X=k)= ,(k=0,1,2,3,4),再利用E(X)=4× 即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网