题目内容
17.函数f(x)=log2(x2+2x-3)的定义域是( )A. | [-3,1] | B. | (-3,1) | C. | (-∞,-3]∪[1,+∞) | D. | (-∞,-3)∪(1,+∞) |
分析 利用对数函数的真数大于0求得函数定义域.
解答 解:由题意得:x2+2x-3>0,即(x-1)(x+3)>0
解得x>1或x<-3
所以定义域为(-∞,-3)∪(1,+∞)
故选D.
点评 本题主要考查函数的定义域的求法.属简单题型.高考常考题型.
练习册系列答案
相关题目
8.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是( )
A. | ($\frac{7}{4}$,+∞) | B. | (-∞,$\frac{7}{4}$) | C. | (0,$\frac{7}{4}$) | D. | ($\frac{7}{4}$,2) |
2.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为( )
A. | ±$\frac{1}{2}$ | B. | ±$\frac{{\sqrt{2}}}{2}$ | C. | ±1 | D. | ±$\sqrt{2}$ |