题目内容
在△ABC中,a、b、c分别为角A、B、C的对边,4sin2
-cos 2A=
.
(1)求角A的度数;
(2)若a=
,b+c=3,求△ABC的面积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348377.png)
(1)求角A的度数;
(2)若a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315364344.png)
(1)A=60°.(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315379453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315379453.png)
(1)∵B+C=π-A,即
=
,
由4sin2
-cos 2A=
,
得4cos2
-cos 2A=
,
即2(1+cos A)-(2cos2A-1)=
,
整理得4cos2A-4cos A+1=0,
即(2cos A-1)2=0.
∴cos A=
,又0°<A<180°,∴A=60°.
(2)由A=60°,根据余弦定理cos A=
,得
=
.
∴b2+c2-bc=3, ①
又b+c=3,②
∴b2+c2+2bc=9. ③
①-③得bc=2. ④
解②④得
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315676635.png)
∴S△ABC=
×1×2×sin 60°=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315411571.png)
由4sin2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348377.png)
得4cos2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315442412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348377.png)
即2(1+cos A)-(2cos2A-1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315348377.png)
整理得4cos2A-4cos A+1=0,
即(2cos A-1)2=0.
∴cos A=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315582338.png)
(2)由A=60°,根据余弦定理cos A=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315598723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315598723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315582338.png)
∴b2+c2-bc=3, ①
又b+c=3,②
∴b2+c2+2bc=9. ③
①-③得bc=2. ④
解②④得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315660637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315676635.png)
∴S△ABC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315582338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034315379453.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目