题目内容

(文)已知函数f(x)=2sinx+3tanx.项数为27的等差数列{an}满足an∈(-
π
2
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,则当k值为
13
13
时有f(ak)=0.
分析:利用和差化积和等差数列的性质可得sina13=0,进而可得f(a13)=0.
解答:解:∵f(a1)+f(a27)=2sina1+3tana1+2sina27+3tana27
=2(sina1+sina27)+3(
sina1
cosa1
+
sina27
cosa27
)

=4sin
a1+a27
2
cos
a27-a1
2
+3•
sin(a1+a27)
cosa1cosa27

=4sina13cos13d+
6sina13cosa13
cosa1cosa27

=sina13(4cos13d+
6cosa13
cosa1cosa27
)

同理f(a2)+f(a26)=sina13(4cos12d+
6cosa13
cosa2cosa26
)

…,
f(a13)=2sina13+3tana13=sina13(2+
3
cosa13
)

∵f(a1)+f(a2)+…+f(a27)=0,∴sina13=0.
∴f(a13)=0,
∴当k值为 13时有f(a13)=0.
故答案为0
点评:本题考查了和差化积和等差数列的性质,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网