题目内容
已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )
A.(-∞,-1) | B.(-∞,2![]() |
C.(-1,2![]() | D.(-2![]() ![]() |
B
由f(x)>0得32x-(k+1)·3x+2>0,解得k+1<3x+
,而3x+
≥2
,
∴k+1<2
,即k<2
-1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040016261441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040016261441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040016198344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240400163081755.png)
∴k+1<2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040016198344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040016198344.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
A.(-∞,-1) | B.(-∞,2![]() |
C.(-1,2![]() | D.(-2![]() ![]() |