题目内容

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=cos( ﹣B),a=3,c=2.
(1)求 的值;
(2)求tan( ﹣B)的值.

【答案】
(1)解:∵sinA=cos( B)=sinB,

∴A=B,

∴b=a=3.

∴cosA= =

=bccosA=3×2× =2.


(2)由(1)可得sinA=

∴sinC=sin(π﹣2A)=sin2A=2sinAcosA=

cosC=cos(π﹣2A)=﹣cos2A=sin2A﹣cos2A=

∴tan( )=tan( )=tan(π+C)=tanC= =


【解析】(1)由sinA=cos( B)=sinB,可得A=B,即b=a。 代入数量积公式即可。
(2)由(1)可得sinA=,sinC,cosC.又由即可求出。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网