题目内容
过点A(1,4),且纵横截距的绝对值相等的直线共有______条.
∵直线的纵横截距的绝对值相等,
∴当直线过原点时,满足条件,此时设过原点的直线为y=kx,
∵直线过点A,
∴4=k,即此时直线方程为y=4x,
当直线不过原点,
则直线的截距时方程为
+
=1,
∵直线的纵横截距的绝对值相等,
∴|a|=|b|,
即b=a,或b=-a,
当b=a时,直线方程为x+y=a,
∵直线过点A,∴a=1+4=5,此时直线方程为x+y=5.
当b=-a时,直线方程为x-y=a,
∵直线过点A,∴a=1-4=-3,此时直线方程为x-y=-3.
∴满足条件的直线有3条.
故答案为:3.
∴当直线过原点时,满足条件,此时设过原点的直线为y=kx,
∵直线过点A,
∴4=k,即此时直线方程为y=4x,
当直线不过原点,
则直线的截距时方程为
x |
a |
y |
b |
∵直线的纵横截距的绝对值相等,
∴|a|=|b|,
即b=a,或b=-a,
当b=a时,直线方程为x+y=a,
∵直线过点A,∴a=1+4=5,此时直线方程为x+y=5.
当b=-a时,直线方程为x-y=a,
∵直线过点A,∴a=1-4=-3,此时直线方程为x-y=-3.
∴满足条件的直线有3条.
故答案为:3.
练习册系列答案
相关题目