题目内容

14.函数f(x)在区间[0,1]上有定义,f(0)=f(1),如果对于任意不同的x1,x2属于区间[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<$\frac{1}{2}$.

分析 利用f(0)=f(1),进行适当放缩外,注意添项减项的技巧应用,即可证得结论.

解答 证明:当|x1-x2|<$\frac{1}{2}$时,由已知得|f(x1)-f(x2)|<|x1-x2|<$\frac{1}{2}$
当|x1-x2|≥$\frac{1}{2}$时,x1,x2∈[0,1],
不妨设0≤x1<x2≤1,其中x2-x1≥$\frac{1}{2}$,
∵f(0)=f(1),
∴|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|
≤|f(x1)-f(0)|+|f(1)-f(x2)|<|x1-0|+|1-x2|=x1-x2+1<-$\frac{1}{2}$+1=$\frac{1}{2}$.
∴对任意的x1,x2∈[0,1],都有:|f(x1)-f(x2)|<$\frac{1}{2}$成立.

点评 本题考查函数与不等式的综合应用,解答时要先充分理解已知条件,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网