题目内容
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )
A.至少有一个白球;至少有一个红球
B.至少有一个白球;红、黑球各一个
C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;都是白球
【答案】B
【解析】解:袋中装有红球3个、白球2个、黑球1个,从中任取2个, 在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;
在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,
是互斥而不对立的两个事件,故B成立;
在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;
在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.
故选:B.
【考点精析】解答此题的关键在于理解互斥事件与对立事件的相关知识,掌握互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生;而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形.
【题目】某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5、6列(如表为随机数表的前2行)的开始,依次向右,直到取足样本,则第五个编号为( ) 附随机数表:
7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
A.63
B.02
C.43
D.07
【题目】通过随机询问2016名性别不同的大学生是否爱好某项运动,得到K2=6.023,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )
P(K2≥k) | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | … |
k | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | … |
A.90%
B.95%
C.97.5%
D.99.5%