题目内容
17.函数y=tan($\frac{π}{3}$-x)的单调递减区间为$(kπ-\frac{π}{6},kπ+\frac{5π}{6}),k∈Z$.分析 由y=tan($\frac{π}{3}$-x)=-tan(x-$\frac{π}{3}$),然后由x-$\frac{π}{3}$在正切函数的增区间内求解x的范围得答案.
解答 解:∵y=tan($\frac{π}{3}$-x)=-tan(x-$\frac{π}{3}$),
由$-\frac{π}{2}+kπ<x-\frac{π}{3}<\frac{π}{2}+kπ$,
解得:$kπ-\frac{π}{6}<x<kπ+\frac{5π}{6},k∈Z$.
∴函数y=tan($\frac{π}{3}$-x)的单调递减区间为$(kπ-\frac{π}{6},kπ+\frac{5π}{6}),k∈Z$.
故答案为:$(kπ-\frac{π}{6},kπ+\frac{5π}{6}),k∈Z$.
点评 本题考查正切函数的单调性,考查了与正切函数有关的复合函数单调性的求法,是基础题.
练习册系列答案
相关题目
5.△ABC的顶点A在y2=4x上,B,C两点在直线x-2y+5=0上,若$|{\overrightarrow{AB}-\overrightarrow{AC}}|$=2$\sqrt{5}$,则△ABC面积的最小值为( )
A. | $\frac{{\sqrt{5}}}{5}$ | B. | 1 | C. | 2 | D. | $\sqrt{5}$ |
6.用数学归纳法证明不等式1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$<2-$\frac{1}{n}$(n≥2,n∈N+)时,第一步应验证不等式( )
A. | 1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{2}$ | B. | 1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{3}$ | ||
C. | 1+$\frac{1}{{2}^{3}}$<2-$\frac{1}{3}$ | D. | 1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$<2-$\frac{1}{4}$ |
7.已知定义在R上的函数f(x)满足f(x-1)-1为奇函数,当x≥-1时,f(x)的值域为[1,2),则 F(x)=f(x-2)+1的值域是( )
A. | (0,2) | B. | (1,3) | C. | (2,4) | D. | (3,5) |