题目内容

【题目】设数列{}是等差数列,数列{}的前项和满足,,

1)求数列{}{}的通项公式:

2)设为数列{}的前项和,求

【答案】12

【解析】

试题分析:(1)根据公式时,可推导出,根据等比数列的定义可知数列是公比为的等比数列,由等比数列的通项公式可求。从而可得的值。由的值可得公差,从而可得首项。根据等差数列的通项公式可得。(2)用错位相减法求数列的和:先将的式子列出,然后左右两边同乘以等比数列的公比,并将等式右边空出一个位置,然后将两个式子相减,用等比数列的前项和公式整理计算,可得

解(1)由(1)

知当=1,,

2,(2)

(1)(2),

( 2)

是以为首项以为公比的等比数列,

2 =

=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网