题目内容
A.选修4-1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/4.png)
C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/6.png)
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_ST/images7.png)
【答案】分析:A、如图,利用 EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.
B、设向量
=
,由 A2
=
,利用矩阵的运算法则,用待定系数法可得x 和 y 的值,从而求得向量
.
C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式
求得所求直线的方程.
D、原不等式可化为
,或
,分别解出这两个不等式组的解集,
再把解集取并集.
解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,
∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2 为定值.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/images7.png)
B、A2=
=
,设向量
=
,由 A2
=
可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/14.png)
=
,∴
,解得 x=-1,y=2,
∴向量
=
.
C、椭圆
(φ为参数)的普通方程为
+
=1,右焦点为(4,0),
直线
(t为参数) 即 x-2 y+2=0,斜率等于
,故所求的直线方程为
y-0=
(x-4),即 x-2 y-4=0.
D、原不等式可化为
,或
,
解得
≤x<
,或-2<x<
,故不等式的解集为 {x|-2<x<
}.
点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.
B、设向量
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/4.png)
C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式
求得所求直线的方程.
D、原不等式可化为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/6.png)
再把解集取并集.
解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,
∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2 为定值.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/images7.png)
B、A2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/17.png)
∴向量
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/19.png)
C、椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/22.png)
直线
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/24.png)
y-0=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/25.png)
D、原不等式可化为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/27.png)
解得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214336028291604/SYS201310232143360282916020_DA/31.png)
点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目