题目内容

【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.

【答案】
(1)

解:(1)∵y2=2px过点P(1,1),

∴1=2p,

解得p=

∴y2=x,

∴焦点坐标为( ,0),准线为x=﹣


(2)

(2)证明:设过点(0, )的直线方程为

y=kx+ ,M(x1,y1),N(x2,y2),

∴直线OP为y=x,直线ON为:y= x,

由题意知A(x1,x1),B(x1 ),

,可得k2x2+(k﹣1)x+ =0,

∴x1+x2= ,x1x2=

∴y1+ =kx1+ + =2kx1+ =2kx1+ =

∴A为线段BM的中点.


【解析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;
(2.)设过点(0, )的直线方程为y=kx+ ,M(x1 , y1),N(x2 , y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网