题目内容
【题目】已知函数.
(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);
(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;
(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.
【答案】(1)递增区间为; (2)4; (3).
【解析】
(Ⅰ)当时,,由此能求出的单调递增区间;
(Ⅱ)由,得当时,y=f(x)的图象与直线y=4没有交点;当a=4或a=0时,y=f(x)的图象与直线y=4只有一个交点;当时,;当时,由,得,由,得,由此能求出的最大值;
(Ⅲ)要使关于x的方程有两个不同的实数根,则,且,根据,且进行分类讨论能求出的取值范围.
(Ⅰ)f(x)的单调递增区间为.
(Ⅱ)因为x>0,所以(i)当a>4时,y=f(x)的图像与直线y=4没有交点;
(ii)当a=4或a=0时,y=f(x)的图像与直线y=4只有一个交点;
(iii)当0<a<4时,0<g(a)<4;
(iv)当a<0时,由
得,
解得;
由,
得
解得.
所以.
故的最大值是4.
(Ⅲ)要使关于x的方程 (*)
有两个不同的实数根,则.
(i)当a>1时,由(*)得,
所以,不符合题意;
(ii)当0<a<4时,由(*)得,其对称轴,不符合题意;
(iii)当a<0,且a-1时,由(*)得,
又因,所以a<-1.
所以函数在是增函数,
要使直线与函数图像在(1,2)内有两个交点,
则,
只需
解得.
综上所述,a的取值范围为.
练习册系列答案
相关题目