题目内容

17.已知a,b,c分别为△ABC内角A,B,C的对边,b=2asinB,且b>a.
(1)求A;
(2)若$a=2,c=2\sqrt{3}$,求△ABC的面积.

分析 (1)利用正弦定理化简已知的等式,根据B为三角形的内角,得到sinB不为0,在等式两边同时除以sinB,得到sinA的值,然后再由A为三角形的内角,利用特殊角的三角函数值即可得到A的度数.
(2)由正弦定理可求得sinC的值,由C∈(0,180°),可得C,从而可求B,利用三角形面积公式即可得解.

解答 (本小题满分12分)
解:(1)解:根据正弦定理化简b=2asinB得:sinB=2sinAsinB,
∵sinB≠0,在等式两边同时除以sinB得sinA=$\frac{1}{2}$,
又A为三角形的内角,
则A=30°或150°.
∵b>a,A为锐角,
∴A=30°.
(2)∵由正弦定理可得:sinC=$\frac{csinA}{a}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∴由C∈(0,180°),可得:C=60°或120°,
∴B=180°-A-C=90°或30°(b>a,故舍去),即sinB=1.
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×2\sqrt{3}×1$=2$\sqrt{3}$.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,同时在求值时注意三角形内角的范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网