题目内容

【题目】设函数f(x)=xex , 则(
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=﹣1为f(x)的极大值点
D.x=﹣1为f(x)的极小值点

【答案】D
【解析】解:由于f(x)=xex,可得f′(x)=(x+1)ex

令f′(x)=(x+1)ex=0可得x=﹣1

令f′(x)=(x+1)ex>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数

令f′(x)=(x+1)ex<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数

所以x=﹣1为f(x)的极小值点

故选D

由题意,可先求出f′(x)=(x+1)ex,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网