题目内容
【题目】设相互垂直的直线,分别过椭圆的左、右焦点,,且与椭圆的交点分别为、和、.
(1)当的倾斜角为时,求以为直径的圆的标准方程;
(2)问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
【答案】(Ⅰ)(Ⅱ)存在,使得恒成立,详见解析
【解析】
(1)将直线的方程与椭圆的方程联立,列出韦达定理,计算出线段的中点坐标,利用弦长公式计算出,于此得出圆心坐标和半径长,再写出圆的标准式方程;
(2)对直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,分别计算出和,可计算出的值,在直线的斜率存在且不为零时,设直线的方程为
,将该直线方程与椭圆方程联立,利用弦长公式以及韦达定理计算出,同理计算出,代入题中等式计算出的值,从而说明实数存在。
(1)由题意可设的方程为,代入可得.
所以,的中点坐标为.
又,
所以,以为直径的圆的方程为.
(2)假设存在常数,使得恒成立.
①当与轴垂直或与轴垂直时,
;
②设直线的方程为,则直线的方程为.
将的方程代入得:.
由韦达定理得:,,
所以.
同理可得.
所以.
因此,存在,使得恒成立.
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄 | ||||||
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)现从年龄在内的5名被调查人中任选两人去参加座谈会,求选出两人中恰有一人支持新农村建设的概率.
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,其中.
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间,内,将其按,,,,,,,,,,,分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如下列联表:
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.