题目内容
意大利数学家列昂那多斐波那契以兔子繁殖为例,引入“兔子数列”: 即,此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被整除后的余数构成一个新数列, __________.
在中,角所对的边分别为,已知,,则__________.
设函数,.
(1)若,且在区间上单调递增,求实数的取值范围;
(2)若且,求证:在区间上有且仅有一个零点.
过点作斜率为1的直线交抛物线于两点,则( )
A. 4 B. 6 C. 8 D. 10
已知椭圆的一个焦点与抛物线的焦点重合,且点到直线的距离为, 与的公共弦长为.
(1)求椭圆的方程及点的坐标;
(2)过点的直线与交于两点,与交于两点,求的取值范围.
给出以下命题:
(1)“”是“曲线表示椭圆”的充要条件
(2)命题“若,则”的否命题为:“若,则”
(3)中, . 是斜边上的点, .以为起点任作一条射线交于点,则点落在线段上的概率是
(4)设随机变量服从正态分布,若,则
则正确命题有( )个
A. B. C. D.
《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上第题为:“今有女善织,日益攻疾(注:从第天开始,每天比前一天多织相同量的布),第一天织尺布,现一月(按天计)共织尺布”,则从第天起每天比前一天多织( )尺布
函数的图象大致是( )
A.
B.
C.
D.
已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积为 .