题目内容
【题目】已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
【答案】(1);(2)当=0时,点O到直线MN的距离为定值.
【解析】
(1)的面积最大时,是短轴端点,由此可得,再由离心率及可得,从而得椭圆方程;
(2)在直线斜率存在时,设其方程为,现椭圆方程联立消元()后应用韦达定理得,注意,一是计算,二是计算原点到直线的距离,两者比较可得结论.
(1)因为在椭圆上,当是短轴端点时,到轴距离最大,此时面积最大,所以,由,解得,
所以椭圆方程为.
(2)在时,设直线方程为,原点到此直线的距离为,即,
由,得,
,,
所以,,
,
所以当时,,,为常数.
若,则,,,,,
综上所述,当=0时,点O到直线MN的距离为定值.
练习册系列答案
相关题目