题目内容
【题目】如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.
(1)求证:平面平面;
(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.
【解析】
(1)在直角梯形中,根据,,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.
(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,,求得平面的一个法向量,再利用线面角公式求解.
(1)证明:在直角梯形中,,,
因此为等边三角形,从而,又,
由余弦定理得:,
∴,即,且折叠后与位置关系不变,
又∵平面平面,且平面平面.
∴平面,∵平面,
∴平面平面.
(2)∵为等边三角形,为的中点,
∴,又∵平面平面,且平面平面,
∴平面,
取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:
则,,则,
假设在上存在一点使直线与平面所成角的正弦值为,且,,
∵,∴,故,
∴,又,
该平面的法向量为,
,
令得,
∴,
解得或(舍),
综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.
【题目】为了迎接2019年的高考,某学校进行了第一次模拟考试,其中五个班的考试成绩在500分以上的人数如下表,为班级,表示500分以上的人数
1 | 2 | 3 | 4 | 5 | |
20 | 25 | 30 | 30 | 25 |
(1)若给出数据,班级与考试成绩500以上的人数,满足回归直线方程,求出该回归直线方程;
(2)学校为了更好的提高学生的成绩,了解一模的考试成绩,从考试成绩在500分以上1,3班学生中,利用分层抽样抽取5人进行调研,再从选中的5人中,再选3名学生写出“经验介绍”文章,则选的三名学生1班一名,3班2名的概率.
参考公式:,.