题目内容
【题目】若集合M={x|x2>4},N={x|1<x≤3},则N∩(RM)=( )
A.{x|1<x≤2}
B.{x|﹣2≤x≤2}
C.{x|﹣2≤x<1}
D.{x|﹣2≤x≤3}
【答案】A
【解析】解:M={x|x>2,或x<﹣2},N={x|1<x≤3};
∴RM={﹣2≤x≤2};
∴N∩(RM)={x|1<x≤2}.
故选A.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
【题目】有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路l的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
所以汽车A选择公路1.汽车B选择公路2