题目内容
【题目】设函数f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a= ,b+c=3(b>c),求b,c的值.
【答案】
(1)
解:f(x)=2cos2x+ sin2x=cos2x+ sin2x+1=2sin(2x+ )+1,
∵ω=2,
∴T=π;
(2)
解:由f(A)=2,得到2sin(2A+ )+1=2,
即sin(2A+ )= ,
∴2A+ = ,
即A= ,
由余弦定理得:cosA= ,即 = ,
整理得:bc=2①,
由b+c=3②,b>c,
联立①②,解得:b=2,c=1
【解析】
【考点精析】通过灵活运用余弦定理的定义,掌握余弦定理:;;即可以解答此题.
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣传费(万元) | 38 | 48 | 58 | 68 | 78 | 88 |
年销售量(吨) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根据所给数据,求关于的回归方程;
(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数, )
附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为