题目内容

给出以下三个命题:
(A)已知P(m,4)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率e=
4
5

(B)过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一动点M,引圆O:x2+y2=b2的两条切线MA、MB,切点分别为A、B,若∠BMA=
π
2
,则椭圆的离心率e的取值范围为[
3
2
,1)

(C)已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,则以F1、F2为焦点且过点P的双曲线的离心率e的取值范围是[2,+∞).
其中真命题的代号是
 
(写出所有真命题的代号).
分析:(A)根据△PF1F2的内切圆的半径为
3
2
,利用内心的定义可得
PF2
F2M
=
PF1
F1M
=
PI
IM
(I为内心),利用椭圆的定义和离心率的计算公式,即可求得结果;
(B)由∠BMA=
π
2
OM=
2
b
,根据OM≤a,即可求得离心率的范围,从而判定命题的真假;
(C)P是直线x=-1上一动点,可得P在x轴上时,双曲线上点到左焦点距离最小,即a最小,从而双曲线的离心率最大,可以得到结果.
解答:解:(1)设M是∠F1PF2的角平分线与x轴的交点,则:
PF2
F2M
=
PF1
F1M
=
PI
IM
(I为内心),
IM
PM
=
3
2
4
=
3
8
,∴
PI
IM
=
5
3

PF2+PF1
F2M+F1M
=
PI
IM
=
2a
2c

e=
6
10
=
3
5


(2)由∠BMA=
π
2
OM=
2
b

∵OM≤a
a≥
2
b
,∴a2≥2(a2-c2),
e∈[
2
2
,1)

(3)P在x轴上时,双曲线上点到左焦点距离最小,
∴c-a≥1,∴2-a≥1,
∴a≤1e=
c
a
a+1
a
=1+
1
a
又a≤1,∴e≥2
点评:本题主要考查了椭圆、双曲线的简单性质.求椭圆的离心率问题,通常有两种处理方法,一是求a,求c,再求比.二是列含a和c的齐次方程,再化含e的方程,解方程即可,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网