题目内容
【题目】已知函数,
(
,且
).
(1)当时,若对任意
,
恒成立,求实数
的取值范围;
(2)若,设
,
是
的导函数,判断
的零点个数,并证明.
【答案】(1)(2)见解析
【解析】分析:(1)由题意,求导,若k≤0,则g′(x)>0,根据函数的单调性即可求得g(x)最大值,即可求得实数k的取值范围;
(2)构造辅助函数,求导,根据函数的单调性及函数零点的判断,即可求得f'(x)的零点个数.
详解: (1)当时,对任意
,
恒成立,
令,求导
,
由,则
,
若,则
,所以
在
上是增函数,所以
,符合题意,
当时,令
,解得
,
,
则在
上是减函数,当
时,
,不符合题意,
综上可知的取值范围为
.
(2)证明:由题意:,由此可得
为一个零点,
令(
),则
,
的减区间为
,单调增区间为
,
其中,则
,
,
,
当时,
,
由零点存在定理及单调性可知在上存在唯一的零点
,
取,则
,令
,知
在
上是减函数,
故当时,
,即
,
由零点存在定理及单调性可知在上存在唯一
,
,
由的单调递减区间是
,则在
上
仅存在唯一的零点
,
综上可知共有三个零点.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:
面包类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
面包个数 | 90 | 60 | 30 | 80 | 100 | 40 |
好评率 | 0.6 | 0.45 | 0.7 | 0.35 | 0.6 | 0.5 |
好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.
(1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;
(2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;
(3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)
【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成,
,
,
,
五组,并作出如图频率分布直方图:
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽取2户进行捐款援助,设抽出损失超过8000元的居民为户,求
的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求,
,
,
,
,
,
的值,并说明是否有
以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
捐款超过500元 | |||
捐款不超过500元 | |||
合计 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:临界值表参考公式:,
.
【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例。
(2)能否在犯错误的概率不超过百分之一的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |