题目内容
【题目】在R上定义运算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为( )
A.1
B.2
C.4
D.8
【答案】C
【解析】解:∵xy=x(1﹣y), ∴(x﹣a)(x﹣b)>0得
(x﹣a)[1﹣(x﹣b)]>0,
即(x﹣a)(x﹣b﹣1)<0,
∵不等式(x﹣a)(x﹣b)>0的解集是(2,3),
∴x=2,和x=3是方程(x﹣a)(x﹣b﹣1)=0的根,
即x1=a或x2=1+b,
∴x1+x2=a+b+1=2+3,
∴a+b=4,
故选:C.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
练习册系列答案
相关题目