题目内容

已知R上的不间断函数 满足:①当时,恒成立;②对任意的都有.又函数 满足:对任意的,都有成立,当时,.若关于的不等式恒成立,则的取值范围_______________.

 【解析】因为满足当时,恒成立,所以在(0,+∞)上单调递增, 又因为满足对任意的都有,所以是偶函数. 因而不等式等价于

        对于函数f(x),当时,

        ,所以f(x)在x=1时有最小值-2.

        ,f(x)max==2

         f(x)min==2.

        

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网