题目内容
设f(x)=
x2-bx+c,不等式f(x)<0的解集是(-1,3),若f(7+|t|)>f(1+t2),求实数t的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540741298.png)
-3<t<3
∵
x2-bx+c<0的解集是(-1,3),
∴
>0且-1,3是
x2-bx+c=0的两根,
∴
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540819744.png)
∵函数f(x)=
x2-bx+c图象的对称轴方程为x=
=1,且f(x)在[1,+∞)上是增函数,
又∵7+|t|≥7>1,1+t2≥1,
则由f(7+|t|)>f(1+t2),得7+|t|>1+t2,
即|t|2-|t|-6<0,亦即(|t|+2)(|t|-3)<0,
∴|t|<3,即-3<t<3.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540741298.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540741298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540741298.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540804833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540819744.png)
∵函数f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540741298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040540866359.png)
又∵7+|t|≥7>1,1+t2≥1,
则由f(7+|t|)>f(1+t2),得7+|t|>1+t2,
即|t|2-|t|-6<0,亦即(|t|+2)(|t|-3)<0,
∴|t|<3,即-3<t<3.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目