题目内容
【题目】在如图所示的正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点,
求证:(1) ;
(2)∠EA1F=∠E1CF1.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)连接, ,由三角形中位线定理可得, ,根据正方体的性质可得,故而可得结论;(2)取的中点,连接,首先证明四边形是平行四边形,得到,再证四边形是平行四边形及平行的传递性,得到,同理得,结合角两边的方向相反,进而可得结论成立.
试题解析:(1)连接, ,在中,因为, 分别为, 的中点,
所以,同理,在正方体中,因为, ,所以,所以四边形是平行四边形,所以,所以.
(2)取的中点,连接,因为, ,所以,
所以四边形是平行四边形,所以,因为,所以四边形是平行四边形,所以,所以,同理可证: ,又与两边的方向均相反,所以.
练习册系列答案
相关题目
【题目】为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:
南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;
(Ⅱ)根据表中数据完成下面茎叶图;
(Ⅲ)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.