题目内容

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,分别为的中点,点在线段上.

)求证:平面

)若的中点,求证:平面

)当时,求四棱锥的体积.

【答案】)证明见解析;()证明见解析;(24

【解析】

试题(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用面面垂直转化为线面垂直底面,再由线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形及平行四边形性质得2)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证,往往需结合平几条件,如三角形中位线性质得,即得平面.同理,得平面,最后根据线面平行证得面面平行平面平面,再由面面平行得线面平行(3)求四棱锥体积,关键在于确定高,即线面垂直.底面,所以底面,所以

试题解析:(1)证明:在平行四边形中,因为

所以.

分别为的中点,得

所以.

因为侧面底面,且

所以底面.

又因为底面,所以.

又因为平面平面

所以平面.

2)证明:因为的中点,分别为的中点,

所以

又因为平面平面

所以平面.

同理,得平面,又因为

平面

平面

所以平面平面

又因为平面

所以平面.

3)在中,过于点

,得

又因为,所以

因为底面,所以底面

所以四棱锥的体积

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网