题目内容

【题目】三棱锥中,,△为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为(

A.B.C.D.

【答案】D

【解析】

由已知作出图象,找出二面角的平面角,设出的长,即可求出三棱锥的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有长度的字母表示),再设出球心,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得的长度,则三棱锥体积的最大值可求.

如图所示,过点,垂足为,过点于点,连接

为二面角的平面角的补角,即有

易知,则,而△为等边三角形,

中点,

c

故三棱锥的体积为:

当且仅当时,体积最大,此时共线.

设三棱锥的外接球的球心为,半径为

由已知,,得.

过点F,则四边形为矩形,

,解得

∴三棱锥的体积的最大值为:.

故选:D.

练习册系列答案
相关题目

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.

根据行业质量标准规定,该核心部件尺寸x满足:|x12|≤1为一级品,1<|x12|≤2为二级品,|x12|>2为三级品.

(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[1215]的产品,记ξ为这2件产品中尺寸x∈[1415]的产品个数,求ξ的分布列和数学期望;

(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;

(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网