题目内容

精英家教网如图,把椭圆
x2
25
+
y2
16
=1
的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=
 
分析:根据椭圆的对称性知,|P1F|+|P7F|=|P1F|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F|=a,由此可得答案.
解答:解:如图,把椭圆
x2
25
+
y2
16
=1
的长轴AB分成8等份,
过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,
则根据椭圆的对称性知,|P1F|+|P7F|=|P1F|+|P1F2|=2a,
同理其余两对的和也是2a,
又|P4F|=a,
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|
=7a=35,
故答案为35.
点评:本题考查了椭圆的定义,解题过程中结合图象,数形结合,会使得问题简单化,数形结合是数学中的重要思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网