题目内容
(本小题满分16分)已知函数
是奇函数
.
(Ⅰ)求实数
的值;
(Ⅱ)试判断函数
在(
,
)上的单调性,并
证明你的结论;
(Ⅲ)若对任意的
,不
等式
恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522232593.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522247307.gif)
(Ⅰ)求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522279192.gif)
(Ⅱ)试判断函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522403213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522466210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316352248172.gif)
(Ⅲ)若对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522497247.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316352252865.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522544796.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522559204.gif)
(Ⅰ)1
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522606438.gif)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522622392.gif)
解:(Ⅰ)由题意可得:
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522669558.gif)
∵
是奇函数 ∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522809403.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522887562.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522918530.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522934607.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522669558.gif)
∴
,即
……………………………………4分
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523043584.gif)
(Ⅱ)设
为
区间
内的任意两个值,且
,
则
,
,
∵
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523261720.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523293220.gif)
即
∴
是
上的增函数.……………………
…10分
(Ⅲ)由(Ⅰ)、(Ⅱ)
知,
是
上的增函数,且是奇函数.
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523527536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523558495.gif)
0
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523527536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523573109.gif)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523698509.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523729459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523573109.gif)
…………………………13分
即
对任意
恒成立.
只需
=
=
,
解之得
……………………………………………………16分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522669558.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522809403.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522887562.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522918530.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522934607.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522669558.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522996267.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523012231.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523043584.gif)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523059240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316352307472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522606438.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523121253.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523137429.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523168418.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523183410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523215536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523261720.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523293220.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523308413.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522606438.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316352337185.gif)
(Ⅲ)由(Ⅰ)、(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316352338665.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522341270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522606438.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523527536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523558495.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523573109.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523527536.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523573109.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523683488.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523698509.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523729459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523573109.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523761408.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523885674.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522497247.gif)
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523932212.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163523979624.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163524088531.gif)
解之得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163522622392.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目